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Abstract—The stability of discrete elastic systems subjected to conservative loading is governed by
the potential encrgy. which is a function of the generalized coordinates. When dry friction is present.
it affects the stability conditions and the post-critical response. Quasi-static loading is considered
and the normal forces to the friction surface are assumed to be specified. General critical state
conditions are obtained in terms of the potential energy and the dissipation function. Then several
examples are presented to illustrate various types of behavior. 1t is seen that limit points, bifurcation
points, and transition points (associated with slip activation or deuctivation) may ocuur on the
deformation path, and that a sudden “snap” from one state to another is a common phenomenon
when the system includes dry (riction.

l. INTRODUCTION

This paper is concerned with the deformation response and stability of discrete clastic
structures in which dry friction is present. The friction forces may act at structural interactions
with foundations, or in connections or hinges between structural components. They are
associated with contact slip and in general provide a non-conservative action on the system.,

Under quasi-static loading, the introduction of dry friction into an elastic system may
change the stability and post-critical behavior drastically. For example, an elastic system
may reach a bifurcation point and then deform smoothly along a stable post-buckling path,
whereas dry friction may eliminate this critical point and may introduce new ones, often
leading to a snap-through type of instability. This effect of dry friction is in contrast to that
of viscous damping, which depends on velocities and does not alter the static deformation
behavior of conservative non-gyroscopic systems.

The modeling of friction is not a simple matter {e.g. see Oden and Martins (1985) and
Martins et al. (1990)]. The Coulomb damping model has been used in many analyses of
the dynamic response of structures [e.g. Pierre er al. (1985)]. If the normal forces on the
contact boundary are assumed to be known, then the friction forces are derivable from a
dissipation function and the formalism of plasticity theory can be applied [see Michatowski
and Mroz (1978) and section 4.3 of Oden and Martins (1985)]. This approach is used here.

In the following section, equilibrium equations and general stability conditions are
obtained in terms of the potential energy and the dissipation function. Several types of
critical states are described. Then, in Sections 3-6, four examples arc presented to demon-
strate these critical states and the effect of dry friction on stability and post-critical behavior.

2. STABILITY OF ELASTIC SYSTEMS WITH FRICTION

Consider a discrete elastic system that contains some friction elements. First, suppose
that the friction elements are not active, and that the system then has n generalized
coordinates g,.i = [,2,...,n, aload parameter 4, and the potential energy function V(q,, 4).

1241



1242 Z. MROZ and R. H. PLauT

The equilibrium equations are obtained by requiring the stationarity of ¥ with respect to
q.ie.

av .
‘—3;1:-_-. Vg;.4) =0, i=12,...,n ¢}

The incremental equilibrium equations are generated from eqn (1), namely
Vig,+Vad=0, i=12,....n ()

where ¢, and { denote increments or rates with respect to some parameter, the subscripts
i. j and 4 indicate partial differentiation with respect to g,. ¢; and A, respectively, and a
repeated subscript implies summation. The equilibrium state is stable if {¥,;} is positive
definite.

The deformation process reaches a critical point when the tangent stiffness matrix
becomes singular, that is, when

where {1} is the eigenvector. A limit point occurs when £ = 0 and V,,¢, # 0, whereas the -
normality condition V¢, = 0 is satisfied at a bifurcation point (Thompson and Hunt, 1973 ;
Huseyin, 1975).

Now assume that the friction elements are active. Their actions will be represented
by friction forces associated with instantancous slips of these elements. Let g; and 4,
k=1.2,....m, denote the displacements and rates (or slips), respectively, of the friction
clements. Assume that there are now 7 generalized coordinates ¢, i = 1,2,...,4, and that
the «; can be written in terms of them, i.c.

a=a(q), k=1,2,....m, i=12,... A @)

The description of [rictional slip here follows the formalism of plasticity theory [sce
Michalowski and Mroz (1978)]. Let T, and T, denote the tangential force components,
and N the normal force component, at the contact surface with respect to a Cartesian
reference system. The limit friction condition can be written as follows :

F(T\,T,,N) = f(T\.T)—uN <0, (5)
where yu is a coefficient of friction and the normal force is assumed to be positive when it is

compressive.
Consider the case of a slip rule of the form

of Lo ,
=4 -— 1y = @ — = 20, = F=40,
a “ar,' a, a()Tz' G,=0, a0, for F=F=0
G, =d,=a,=0, for F<0 or F=0 F<0, 6)
where
a = (ai+a3)". Q)

This slip rule preserves the normality of slips to the limit surface (5) only in the plane
N = constant, as there is no normal slip component. To preserve the normality property,
the following analysis will be confined to cases where normal forces on contact surfaces are
specified from static equilibrium conditions and it is sufficient to consider intersections of
the limit surface (5) by planes N = constant, so that eqn (5) becomes
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FT.T,, T,) = f(T,.,T;)~-T, =0, T,=uN, %)

and T, is specified at each contact point.
The dissipation function

is introduced. It is a homogeneous function of slips of degree one. If there is a single friction
element, then

D=D(d|.d3) = T;d;+T2d2 (10)

and the inverse relation to eqn (6) takes the form

Ti=fon Ti=5o an
when D is differentiable, i.e. when (4, @,) # (0, 0). For the case of isotropic friction,
FT\.T:,Ty) =(Ti+ T =Ty =0, D= Ty(ai+a1)"’, (12)
so that eqns (11) become
T, = Tya\fa, T, = T,a./q, (13)

where ¢ is defined in egn (7). When eqn (5) is satisfied as an incquality, F < 0, there is no
slip at the friction element and the friction force is represented in the force plane by an
interior point of the domain enclosed by F = 0.

With the use of eqn (4), the dissipation function D given by eqn (9) can be expressed
interms of ¢, and ¢, i = 1,2, ...,A, namely (when 4, # 0 and 4, # 0)

da,, ©¢Doa,, oD
D= Ttaq 9= aa aq = aq qf 7;‘}1 (i4)

where the dissipation forces 7, are given by

-9-<q,.qf) (15)

Then the potential energy V = V(g,, 4) and the dissipation function D = D(g,, ¢,) can be
used to generate equilibrium and stability conditions. Accounting for dissipative forces, the
equilibrium equations are

BV oD

a aql 0 i.e. K'{"D(" = 0, i= 1020"'sﬁv (16)

where the notation Dy, = 3D/dq, is used.

Now consider the incremental equilibrium equations along any deformation path in
the configuration space, g, = q,(s), 4 = A(s), where s denotes the arc length. Departing from
the equilibrium position at s = 5,, one can write
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qi(5) — q.(50) = (s—50)§, + (5—50)%G.,/2+ -,
A(5) —A(so) = (s—So)A+(s—50) 242+ -. 17

Differentiating eqn (16) and retaining linear terms in s — s, one obtains
V,‘,‘l),‘*‘D(,n(L +Dll'/')éj+ V,—AI=0. l= l.2,...,ﬁ. (18)
where

oV ‘D é*D oV
Vi=5g—5- Dpj=5—~— Dip=5—5- Vu=+%.

7 0q,0q; W o4, Oq; W o4, 0q; ! Cq, 04 (19
Equations (18) constitute the incremental equilibrium equations. Let us note that D is a
homogeneous function of ¢, of degree one. Hence D, and D,;,; are homogeneous functions
of ¢, of degree zero, and D, ; is homogeneous of degree minus one. In view of Euler's
theorem for homogeneous functions, the following equalities can be stated :

D _i(i’z)- _i(a_”-)_ﬁe_,)
o= 0, \0q.)" T aq \oq. ") T aq, =

. d [OD\ . .
Dyng = o (5&‘/)‘1: = Dypg, = 0. (20)

From cqn (20) it follows that Dy, is a singular matrix and ¢, is its cigenvector. Multiplying
cqn (18) by ¢, and using eqn (20), one obtains

(Vo + D), + Vg d = V,4.4,+ D4+ Viugi = 0. Q)

Along the deformation path, several types of critical points are possible, such as limit
points, transition points or bifurcation points. At a limit point, the path exhibits a local
maximum [Fig. 1(a)] or a local minimum [Fig. 1(b)], slip continues in all active elements,
and one has

(V1/+D(i)/)‘]:‘]/ = Vij‘]:‘}/'*'D/q/’ =0, i= 0, Vug: #0. (22)

A transition point is associated with slip activation or slip deactivation, and there is
a slope discontinuity in the load—-displacement curve, as illustrated for one type of case in
Fig. 1(c). For example, if only elastic deformation occurs for s < 54 and if slip is activated
at s = s, then eqns (2) govern for s < 5, and egqns (18) apply as s increases past s,, and the
transition from stable to unstable response at s = s, occurs when

(

R

(7, [
(7]
(7]
w
(7]
(7]

-
(2)
—

(a) (b)

Fig. 1. Limit points (a.b) and transition point (c) on load-displacement curve.
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Viiq.i- q'j- > 0' Vijq.i* q'jf +qu.j+ <0 (23)

where g, and ¢;” denote values for s = 5, and s = 57, respectively, at the transition point.
If slip occurs and the state g, is stable, then

V44, +D;g; > 0. (24)
Bifurcation may occur when
;/ai,‘ = 0, [V,’+D“”]t‘l = 0, i= l,z,.-.,ﬁ. (25)

where {f;} is an eigenvector. However, since Dy, is in general a non-linear matrix of slips
of degree zero, the resulting eigenvalue problem may be non-linear. It turns out that the
friction effect tends to eliminate the bifurcation points which would have existed in a purely
elastic system, and typically induces the appearance of limit points or transition points and
the occurrence of a ““snap” instability.

3. EXAMPLE 1: RIGID BAR ON FRICTIONAL FOUNDATION

Consider a rigid bar of length L (Fig. 2). Its base is pinned with an elastic rotational
spring of stiffness ¢. A vertical load P is applicd at the tip of the bar. The bar rests on a
frictional foundation coinciding with the plane of the figure, and the specific friction force
(per unit length of the bar) is ¢. The angular coordinate 0 is measured from the vertical
[Fig. 2(b)]. and the initial configuration (when the spring is unstretched and before slip has
been activated) is € = J [Fig. 2(a)].

The bar does not displace until slip is activated, and then 7i = m = | and

gi=0, a,=(L/2)0, T,=¢qL, A=P,
V = (c/2)(0~6)*~PL(cosd—cosl), D= T,a, =qL*/2. (26)

The equilibrium equation (16) becomes
c(0—38)—PLsin0+4¢L?2 =0. 27

In terms of the quantities

(a) (b)
Fig. 2. Geometry of Example | : (a) belore slip ; (b) during slip.
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Fig. 3. Example 1 : (a) load-displacement curves; (b) minimum load.

p=Pllc, §=qL*Qc), a=4-34, (28)

the solutions of eqn (27) for 0 < 6 < 2 are plotted as solid curves in Fig. 3(a) for a = 0.10,
0.05, 0, —0.05 and —0.10. The portions of the paths with positive slope are stable and
those with negative slope (to the left of the minima) are unstable.

Conditions (22) for a limit point, along with eqn (27), yield

tanf, —0n = a, pm = = I+%(3a)z”, (29)

cos B,

where 0,, and p,, denote the values of 6 and p, respectively, at the limit points, which are at
the minima. For small positive values of a, it is seen that the limit points exhibit the typical
sensitivity with respect to a of 2/3 order. The variation of p,, with « is shown in Fig. 3(b),
where the solid curve gives the exact result and the dashed curve is based on the approximate
relation for small a.

First, assume that the unloaded bar is vertical, so that =0 and a 2 0. If a = 0 (no
friction), symmetric bifurcation occurs at the critical point p = | and the post-critical
response p = 0/sind is stable. If friction is present, so that a > 0, there is no bifurcation
from the trivial solution 8 = 0 and the vertical bar is stable for all values of p (i.e. the
*critical load” is infinite).

Now assume 4 > 0. Slip is activated when 8 = J in eqn (27), i.e. when p reaches the
value p* = g/sind. For example, if § = 0.20 and ¢ = 0.30, then a = 0.10 and p* = 1.51, so
that as the load is increased, the bar remains at @ = 4 until p reaches the value 1.51 [dashed
line in Fig. 3(a)], then slip is activated {point A in Fig. 3(a)]. then the bar exhibits a dynamic
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“snap” to the configuration = 1.39 at point B [which also satisfies eqn (27) at p = 1.51).
and finally @ increases smoothly with further increase in the load. As another example,
assume & = 0.30 and g = 0.20. Then a = ~0.10 and p* = 0.68. As the load is increased,
the system follows the vertical dotted line in Fig. 3(a) until p = p* (point C) and then 8
increases along the stable rising path, with no snap occurring in this case when slip is
activated.

Similar curves to those in Fig. 3(a) were obtained by Kerr (1973) in a model of vertical
buckling of a railroad track under compression. The model involved rigid bars, rotational
springs and a conservative distributed load (whereas the friction force here is non-con-
servative). The vibrations of a rigid bar pinned at its base and subjected to other types of
dry friction action were examined by Hoff (1949) and Klepp (1990).

4. EXAMPLE 2: RIGID BAR WITH STRING

This model is similar to Example 1, but the frictional foundation is replaced by a
friction element that is attached to the tip of the bar with a taut string of length 5. The
configuration before slip, in which the string is horizontal, is depicted in Fig. 4(a), while
the displaced system is drawn in Fig. 4(b). where the angle of the string with the horizontal
is denoted ¢ and the deflection components of the friction element are «, and u,, as shown.
The horizontal and vertical components of the friction force acting on the element are
denoted T, and T,, respectively.

After slip is activated, i = m = 2 and

Gq1=0, g:=¢, ay=u,, ay=u, T,=T, T;=T7,, A=P 30
The limit friction condition is given by the first of eqns (12), and the slip rule
ufi, =TT, 3hH
is obtained from eqns (13). From the geometry of Fig. 4, one can show that

u, = b+ Lsin0—~Lsind—bcos ¢,
u, = Lcosd~LcosO—bsing, (32)

which leads to the incremental form
t, = Lcos@+bdsing, i, = LOsin0—bdcos . (33)
Equations (30) and (33) are used in eqn (10) to vyield the dissipation function

D = D(6, ¢,6, $), and the potential energy ¥ = ¥(8) is given in eqns (26).
From eqgn (16), the equilibrium equations are given by

Fig. 4. Geometry of Example 2: (a) before slip ; (b) during slip.
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c(@—0)—PLsin0+ T, LcosO+T,Lsinf=0 (34)

and
(T,sing—T,cos )b = 0. (35
With the use of eqn (35) in the first of eqns (12), one obtains
T, =Tycos¢p, T,=Tysing. (36)
Then. if eqns (33) and (36) are substituted into eqn (31). one finds that
é = (L/b)dsin (0 o). (37
Also, use of eqns (36) in the first partial derivatives of D(6. ¢.d, §) yields
Dy = TyLcos(0—¢). Dy, =0. (38)
Differentiating D and ¥ and utilizing eqns (36) and (37). condition (24) for stability becomes
03 {c—PLcos0— ToLsin(0—¢)[1 —(L/b)sin (0 —)]} > 0. 39

If one substitutes eqns (36) into eqn (34), then determines the incremental form of the
resulting equilibrium equation, and then uses eqn (37) to climinate @, one obtains

PLsint = 0{c— PLcos =T, Lsin (0 —$)[1 —(L/b)sin (0 -$)]}. (40)
If sin0 > 0, it follows from eqns (39) and (40) that the system is stable if £/0 > 0, i.c. if
the load -displicement curve is rising,
Define the non-dimensional quantities
p="PLle, ty=TyLle, B=b/L. 41)
When 1, = 0.1 and f = 0.15, results are plotted in Fig. S for initial angles 6 = 0.050, 0.075

and 0.100. To determine when slip is activated, 6 = 8 and ¢ = 0 are substituted into eqns
(34) and (36), leading to T, = T, T, = 0 and P = T, cot 3. Therefore slip begins in Fig. 5

T T | L L ] T T T T
20+ i
8§ «0.050
1.5} 0.075 \ .
0.100
\\ ‘%
P 1ol
o5} i
0 0 1 1L 1 N 1 ] —rl H
0.0 0.2 0.4 0.6 0.8 1.0
0

Fig. 5. Load-displacement curves for Example 2 when ¢, = 0.1 and f# = 0.15.
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at p=p*=1998, 1.331 and 0.997 for é = 0.050, 0.075 and 0.100, respectively. The
subsequent load-displacement curves are computed incrementally with the use of eqn (40).
If 6 = 0.100, the path is rising and stable, whereas the other two cases exhibit a dynamic
snap to a large value of 8 if p is increased beyond p*.

5. EXAMPLE 3: RIGID BAR WITH TRANSLATIONAL SPRING

This example is the same as Example 2 except that the string is replaced by an elastic
translational spring with stiffness £ and unstretched length 4. The unloaded configuration
is depicted in Fig. 6(a). As the load P is increased quasi-statically from zero, elastic
deformation occurs before slip is activated, so that the friction element does not move and
u, = u, = 0, as shown in Fig. 6(b). Slip begins when P reaches a threshold value, and the
configuration has the form sketched in Fig. 6(c).

Before slip is activated, n =1, ¢, = § and A = P. Let n denote the deformed length
of the spring. The potential energy is given by

V = (c/2)(0 —)* — PL (cos  —cos ) + (k/2)(n —b)? (42)
where

n=(n+g)" n, =b+Lsin0-Lsind—u,,
n, = Lcosd—Lcost~u,, 43)

with u, = u, = 0. The equilibrium cquation (1) becomes
(0 —38) - PLsin0+ kL[l —(b/n)}(n.cosO+n,sin) = 0. (44)

If sin® > 0, it turns out that the stability condition ¥V, > 0 is satisfied if the load-
displacement curve is rising.

It will be shown that the friction element begins to slip when the force (7 — b)k in the
spring attains the value Ty, i.e. when

n = b+(Ty/k). (45)

Hence the angle 0 = 0* at slip activation can be computed by substituting eqn (45) and
u, = u, = 0 into eqns (43), and the corresponding loud P = P* can then be obtained from
eqn (44).

When slip occurs, the system has three degrees of freedom:7i=3,¢, = 0, ¢, = u, and
q, = u,. The quantities a,, #;, T\, T, and A are the same as in eqns (30). The potential
energy is given by eqn (42), and the dissipation function is

@) ®) (€
Fig. 6. Geometry of Examplc 3: (a) unloaded ; (b) before slip; (c) during slip.
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D =T +T,, (46)

From egns (16), one obtains three equilibrium equations: eqn (44),
To=kn(l—(b/m) and T, =kn,[l—(b/n)]. @n

Equation (45) then follows if eqns (47) are substituted into the limit friction condition in
eqn (12).

Since the spring length # is constant when slip occurs, due to eqn (45), it is simpler to
carry out the analysis in terms of the angles 6 and ¢, as in Example 2. From Fig. 6,

N =ncos¢, n,=nsing. (48)

Using eqns (45) and (48). eqns (47) reduce to eqns (36) and the equilibrium equation (44)
becomes

c(0—06)—PLsin@+ TyLcos(0—¢) = 0. 49)

With the use of eqns (43) and (48), one can show that u, and 4, are given by eqns (33)
with b replaced by n. Then, utilizing the slip rule (31) and eqns (45)-(48). it follows that
eqns (36)-(40) are also valid in this example if b is replaced by n. Again, a rising load-
displacement path is stable and a falling path is unstable if 0 < 0 < r.

Results are presented in Figs 7 and 8 for ¢, = 0.2, f = 0.1 and y = 0.4, where

1.8 —r—r-r—T—T"TT 7T T T T T
1.7

1.6

p 15

RO T T T T T T T T T T

1.5

p 1.0

0.5

0.0
0.0

Fig. 8. Load-displacement curves for Example 3 when o = 0.2, § = 0.1, 7 = 0.4 and = 0.05.
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p=PLlc, to=T,Llc, B=0b/L, y=kLc. (50)

In Fig. 7. the unloaded bar is vertical, so that there is a trivial solution & = 0. Bifurcation
occurs at p = 1 +y = 1.4, where Vy = 0 (note that the ordinate in Fig. 7 does not start at
p = 0). The stable, elastic post-buckling path is determined from eqn (44). Slip is activated
when eqn (45) is satisfied, which occurs at p = 1.44 with § = 0.51 and ¢ = 0.21 (point A).
The subsequent path is obtained from the incremental equilibrium equation [eqn (40) with
b replaced by n from eqn (45)]. It falls to a minimum at p = 1.37, 8 = 0.78 and ¢ = 0.37,
and then rises. Therefore, if p is increased beyond p = 1.44, the system snaps to point B,
where p = 1.44, § = 1.12 and ¢ = 0.62, and then follows the stable rising path, with the
spring length fixed at 0.6 L {from eqn (45)].

In Fig. 8, 8 = 0.05 when p = 0. As p is increased, the bar rotates smoothly until the
spring reaches 0.6 L. which occurs at p = 1.32, 8 = 0.57 and ¢ = 0.24 (point A). The
subsequent path is unstable until its minimum at p = 1.30,0 =0.73 and ¢ =0.33. If p is
increased beyond the transition point A, the system snaps to point B, where p = 1.32,
0 = 0.91 and ¢ = 0.45, and then the friction element slips as @ increases further.

6. EXAMPLE 4: ELASTIC BAR WITH FRICTION ELEMENT AT TIP

In this example, the bar is not rigid in the axial direction, but is elastic with stiffiness k
and tip deflection w (positive for compression). Also, the friction element is attached to the
bar at its tip, and has negligible dimensions (i.e. the tip of the bar is in contact with the
friction plane). The configuration of the system is shown in Fig. 9(a) before slip is activated
and in Fig. 9(b) during slip. As before, u, and u, are the horizontal and vertical deflections,
respectively, of the element. The forces acting on the clement during slip arc depicted in
Fig. 9(c). with S rcpresenting a shear force.

There is no deflection of the system (i.e. 8 = 8, w = 0) until slip is activated. During
sip,i=m=2,¢4,=0,¢4, =wanda,, a,, T, Tand A are given in eqns (30). The potential
cnergy is

V = (¢c/2)(0—6)* — P[Lcos 6 — (L —w) cos 0] + (k[2)w? (51
and the dissipation function is the same as in eqn (46). From geometry,
u. = (L—w)sin0—Lsind, u, = Lcosd—(L—w)cosb, (52)
leading to the rates
i, = (L—w)lcos0—wsin0, u, = (L—w)dsin0+wcosd. (53)

Equations (53) are substituted into eqn (46), and eqns (16) then yield the following equi-
librium equations:

Fig. 9. Geometry of Example 4: (a) before slip ; (b) during slip ; (c) forces on friction element during
slip.
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c(0—6)—(L-w)[(P-T,)sin0—T,cosf] =0, (59)

kw—(P—T,)cos8—T, sinf = 0. (55)

Using 8 = 6 and w = 0 in eqns (54) and (55), and the limit friction condition in eqn (12)
leads to the values T, = 0, T, = Toand P = T, when slip is activated.
The incremental forms of eqns (54) and (55) are

= (L—w)[(P—T,+T0)sin0+(P6—T,0—T,)cos )
+Ww[(P—T,)sin0~T,cos8] =0, (56)

ki+(PO-T,0-T,)sin0—(P—T,+T,8)cosd = 0. (57)
Differentiation of the limit friction condition in eqn (12) yields the relation
T.7.+T,7T, =0. (58)
Also, substitution of eqns (53) into the slip rule (31) gives
(L—w)(T,sin@~T,cos 0) — (T, cos 0+ T, sin O = 0. (59)

Equations (56)-(59) arc linecar equations in the rates 2. T. 1" w and . One can start
from the slip activation point, with P =T, T, =0, T, = Ty, 0 = 5 and w = 0, and apply
these four equations to develop the deformation path. For example, onc can select a small
valuc for §, solve the lincar equations for the other four rates, and then add these five
increments to the corresponding values to get the next state of the system. Its accuracy can
be checked by substituting the values of P, T, T,, w and @ into the equilibrium cquations
(54) and (55). Alternatively, one can manipulate eqns (54)-(59) and climinate some of the
variables. In the numerical examples to follow, for instance, 7, and w were eliminated, ¢
was specified and two simultaneous equations were solved for Pand T..

In this example, the non-dimensional quantities are defined by

p=PIkL), ty=To/(kL), &= c/(kL?), W =w/L, (60)

and results are obtained for 6 = 0.1, 1, = 0.001 and & = 0.001,0.005 and 0.010. Deformation
paths are plotted in the 6, p plane in Fig. 10. Slip is activated at p = 0.001, 0 = 0.1 and
w = 0. Rising portions of the path are stable and falling portions are unstable. For the case
¢ = 0.001, a maximum occurs at p = 0.0094, § = 0.109 and w = 0.0092, and further increase

ey
Q
r
©
[+2]
T

0 : L 1 I 1
0 0.2 04 0.6 0.8 1.0 1.2

0
Fig. 10. Load-displacement curves in the {, p planc for Example 4 when 8 = 0.1 and ¢, = 0.001.
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in p leads to a dynamic snap. The path has a minimum at p = 0.0023, 6 = 1.114 and
w = 0.0010. When ¢ = 0.005, a maximum occurs at p = 0.0097, 0 = 0.110 and & = 0.0096,
and there is a minimum at p = 0.0062, 6 = 0.639 and w = 0.0050. Finally, if ¢ = 0.010,
there is a slight snap from 8 = 0.115 to 8 = 0.121 when p = 0.0102, and for larger values
of ¢ the limit points will disappear and the entire path will be rising and stable.
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